منابع مشابه
Cremmer-Gervais Quantum Lie Algebra
We describe a quantum Lie algebra based on the Cremmer-Gervais R-matrix. The algebra arises upon a restriction of an infinite-dimensional quantum Lie algebra.
متن کاملQUANTUM LIE ALGEBRAS OF TYPE An POSITIVE, PBW BASES AND THE YANG-BAXTER EQUATION
We show explicitly a generalised Lie algebra embedded in the positive and negative parts of the Drinfeld-Jimbo quantum groups of type An. Such a generalised Lie algebra satisfy axioms closely related to the ones found by S.L. Woronowicz. For the universal enveloping algebra of such generalised Lie algebras we establish several conditions in order to obtain bases of type Poincaré-Birkhoff-Witt. ...
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملOn The Formality Theorem for the Differential Graded Lie Algebra of Drinfeld
We discuss the differential graded Lie algebra (DGLA) of Drinfeld modeled on the tensor algebra ⊗ Ug of the universal enveloping algebra of a Lie algebra g over any field K of characteristic zero. We explicitly analyze the first obstruction to the existence of the formality quasi-isomorphism for this DGLA. Our analysis implies the formality of the DGLA ⊗ Ub of Drinfeld associated to the twodime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics: Conference Series
سال: 2012
ISSN: 2010-1945,2010-1945
DOI: 10.1142/s2010194512006812